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Motivating Scenario

ARO MURI: Cyber Situation Awareness

Mission: Targeting, authorization to launch weapon, damage assessment, clean up

Combination of forces, multiple countries (internal & external data networks)
Mix of automated and human decisions based on real-time feedback
Redundant systems, multiple levels of performance may acceptable
System is vulnerable to attacks both at physical & cyber resources

targeting information server
• satellite photos of the area
• map showing geographical features
• reports from recon units on the ground

targeting service
• predict enemy troop locations
• location of friendly troopscryptographic service

• secure video/audio connections 
• internal/outside networks

trust federation services
• trust-level of different entities
• information sharing based on trust-level

UAV ground station server
• collects data from the UAVs
• imagery for target 

confirmation and damage 
assessment

network of 
cyber resources

physical
 resources

Key ingredients

Key ingredients
1. Mission is characterized by

“spatial” pattern: which combination of resources are 
required for success?
“temporal” pattern: which resources are needed when?

2. Actors
blue & red teams
opposite goals

3. Rules of engagement
which actions are allowed?
what are the consequences of the actions?

4. Information structure
what information is available to take actions?
can one actor see the effect of the other’s actions?

Mission: Targeting, authorization to launch weapon, damage assessment, clean up

Combination of forces, multiple countries (internal & external data networks)
Mix of automated and human decisions based on real-time feedback
Redundant systems, multiple levels of performance may acceptable
System is vulnerable to attacks both at physical & cyber resources

ground 
station 
server

targeting 
inform. 
server

targeting 
service

trust fed. 
services

crypto. 
service



Cyber Awareness Games

Mission:
1. target information server (TIS) gathers data

UAV ground station server (GSS) gathers data
2. targeting service (TS) queries TIS and generates 

candidate target coordinates
3. human operator queries GSS for near-real-time imagery
4. human operator operator either

accepts target or 
requests alternative coordinates (back to 2.)

...

10. allied ground forces complete clean up
11. end-of-mission confirmation received by command 

center 

at different points in time, different cyber-resources need to be available
some level of redundancy allows for a mission to be completed using 
different configurations of resources

ground 
station 
server

targeting 
inform. 
server

targeting 
service

trust fed. 
services

crypto. 
service

Cyber Awareness Games

Actors & their Cyber actions:

Blue forces may...
rate-limit:

constrain multiple connections from same IP
constrain overall rate of service responses

confine: 
enable/disable services or disallow new connections
kill processes and/or de-authorize users

re-instate:
reboot host
reinstall host OS to uncompromised state

Red forces may...
compromise:

gain access to hosts
tamper with data

degrade performance:
launch DOS attacks
compromise routing or transport

disable:
disable services
disable hosts

ground 
station 
server

targeting 
inform. 
server

targeting 
service

trust fed. 
services

crypto. 
service



Cyber Awareness Games

Red forces may...
compromise:

gain access to hosts
tamper with data

degrade performance:
launch DOS attacks
compromise routing or transport

disable:
disable services
disable hosts

Blue’s trade-off: turning off all services will guarantee that red cannot 
compromise cyber infrastructure, but will also prevent mission completion

Detailed knowledge of the possible red actions cannot be assumed a-priori
(due to the potential for unknown vulnerabilities)
Will provide estimates for mission success for different levels of unknown 

ground 
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Actors & their Cyber actions:

Blue forces may...
rate-limit:

constrain multiple connections from same IP
constrain overall rate of service responses

confine: 
enable/disable services or disallow new connections
kill processes and/or de-authorize users

re-instate:
reboot host
reinstall host OS to uncompromised state

Cyber Awareness Games

Information structure: 
both sides only have a partial view of mission’s state

Blue has access to
service current availability
alerts form packet sniffing systems
(detection of known malware)
anomaly-based intrusion detection systems
(deviations from normal behavior)
OS and network logs

but difficult to conclusively determine if
a host has been compromised
a re-instate measure succeeded at “cleaning” a host

Red may also have difficulties in determining if
a previously compromised 
host has been cleared

succeed in preventing 
a key mission step

gained access to a 
real host or to a 
“sand-box”

ground 
station 
server

targeting 
inform. 
server

targeting 
service

trust fed. 
services

crypto. 
service



Cyber Awareness Games

Information structure: 
both sides only have a partial view of mission’s state

Blue has access to
service current availability
alerts form packet sniffing systems
(detection of known malware)
anomaly-based intrusion detection systems
(deviations from normal behavior)
OS and network logs

but difficult to conclusively determine if
a host has been compromised
a reinstate measure succeeded at “cleaning” a host

Red may also have difficulties in determining if
a previously compromised 
host has been cleared

succeed in preventing 
a key mission step

gained access to a 
real host or to a 
“sand-box”
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Partial information is a crucial aspect of the problem
Our estimates of the current “state”of the mission depend on 
what we believe the adversary might have done in the past 
! ! " infinite belief recursion (I think, that she thinks, that I think, …)

No known solutions based on separation between estimation & control
(cannot independently estimate state & then decide best action)

No known solutions using dynamic programming
(thus high complexity and inability to prune)





...

. . . aij . . .

...





Matrix Game Abstraction

Two players:
P1 - defender (minimizer)
P2 - attacker (maximizer)

Each player selects a policy:
S1 - set of available policies for P1
S2 - set of available policies for P2

All possible game outcomes can be encoded in a matrix (2D-array),
jointly indexed by the actions of the players

P1‘s 
policy

P2‘s policy

Attention! To allow for dynamic 
partial information games, “policy” 
must be understood in a feedback 
sense:

What will be my response to
each possible observation?

policy : observations    actions

game outcome when
P1 selects action i
P2 selects action j



Pure Security Policies

Security level for P1 (minimizer):

for each own action, 
consider worst 

adversary response

pick best worst-case
(called security policy) 

guaranteed 
performance level 

against any 
adversary’s choice 

Security level for P2 (maximizer):

V̄ := min
i

max
j

aij

V := max
j

min
i

aij

Pure Security Policies

But ...
(Pure) security levels/policies can be very conservative -- implicitly assume 

1. other player knows our policy ahead of time and
2. selects its response based on that knowledge

think R.P.S.

Security level for P1 (minimizer):

for each own action, 
consider worst 

adversary response

pick best worst-case
(called security policy) 

guaranteed 
performance level 

against any 
adversary’s choice 

Security level for P2 (maximizer):

V̄ := min
i

max
j

aij

V := max
j

min
i

aij



Randomized Policies

Mixed policies ≣!selecting policies randomly according to a carefully
! chosen distributions (as opposed to always selecting fixed policy)

Mixed security level for P1 (minimizer):

optimization over 
probability 

distribution y used to 
select policy i

optimization over 
probability 

distribution z used to 
select policy j

Mixed security level for P2 (minimizer):

V̄ := min
y

max
z

E[aij ]

V := max
z

min
y

E[aij ]

mixed security levels for both players always match (minmax Theorem)

non-conservative solutions —!other player can “corner” us into the security level
! ! ! ! ! without knowing our policy

Randomized Policies

Mixed policies ≣!selecting policies randomly according to a carefully
! chosen distributions (as opposed to always selecting fixed policy)

Mixed security level for P1 (minimizer):

optimization over 
probability 

distribution y used to 
select policy i

optimization over 
probability 

distribution z used to 
select policy j

Mixed security level for P2 (minimizer):

V̄ := min
y

max
z

E[aij ]

V := max
z

min
y

E[aij ]

V := min
y

max
z

E[aij ] = max
z

min
y

E[aij ]



Matrix Game Abstraction

Attention! To allow for dynamic 
partial information games, 
“policy” must be understood in a 
feedback sense:

What will be my response to
every possible observation?

huge # of possible choices
for most interesting games, it 
is not feasible to even 
construct the whole matrix





...

. . . aij . . .

...





Two players:
P1 - defender (minimizer)
P2 - attacker (maximizer)

Each player selects a policy:
S1 - set of available policies for P1
S2 - set of available policies for P2

All possible game outcomes can be encoded in a matrix (2D-array),
jointly indexed by the actions of the players

P1‘s 
policy

P2‘s policy

game outcome when
P1 selects action i
P2 selects action j

Sampled Saddle Point (SSP) Algor.
1. Each player randomly (and independently) selects a submatrix of the overall game








A1

A2









Player P1

Player P2
y∗

z∗

in very large 
games, 

submatrices will 
likely be non-
overlapping

2. Each player solves its subgame (as if it were the whole game) and computes
mixed security levels: V(A1) & V(A2)
corresponding security policies: y*, z*

3. Players play their mixed security policies against each other






y∗

z∗



Because of independent subsampling, a 
player can now be unpleasantly surprised:

Sampled Saddle Point (SSP) Algor.

outcome larger than minimizer expected
based on its submatrix A1 (by more than∊)

1. Each player randomly (and independently) selects a submatrix of the overall game

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





Player P1

Player P2
y∗
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in very large 
games, 

submatrices will 
likely be non-
overlapping

2. Each player solves its subgame (as if it were the whole game) and computes
mixed security levels: V(A1) & V(A2)
corresponding security policies: y*, z*

3. Players play their mixed security policies against each other






y∗

z∗ Ey∗,z∗ [aij ] > V (A1) + �

SSP Notions of Security

Probabilistic notion of security:
probability of (unpleasant) surprises should be below a pre-specified bound
with more computational power, one can demand lower prob. of surprise

Definition:! The SSP algorithm is ϵ " secure for P1 (minimizer)
! with confidence 1"# if 

outcome larger than P1 expected
(by more than∊)

Can we guarantee ϵ " security for a pre-specified small probability of violation # ?

YES, provided that our sample is sufficiently rich!

Definition:! The SSP algorithm is ϵ " secure for P2 (maximizer)
! with confidence 1"# if 

outcome smaller than P2 expected
(by more than∊)

P(Ey∗,z∗ [aij ] > V (A1) + �) ≤ δ

P(Ey∗,z∗ [aij ] < V (A2)− �) ≤ δ



Game-independent Bounds

A2








Player P2

m2 cols

n2 cols

Theorem:! The SSP algorithm is ϵ = 0 " secure for P1 (minimizer)
! with confidence 1"#, for 

Conversely, to obtain desired confidence level #, suffices to select

“fat” sampling for A1

!
test more options for 
opponent than own

(by appropriate ratio)








A1

Player P1

n1 cols

m1 cols

δ =
m1n2

n1

n1

m1
≥ n2

δ

Proof utilizes results from the “scenario approach” to convex 
optimization using randomized methods [Calafiori, Campi 2006-2009] 

Game-independent Bounds
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Theorem:! The SSP algorithm is ϵ = 0 " secure for P1 (minimizer)
! with confidence 1"#, for 

Conversely, to obtain desired confidence level #, suffices to select

“fat” sampling for A1

!
test more options for 
opponent than own

(by appropriate ration)
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Game-independent bounds
valid for any game
independent of the size of the game

Bounds on relative computation
required size of my sample depends on
size of opponents’ sample
the more I search for a good solution (large m1), the 
more options need to consider for opponent (large n1) 

Proof utilizes results from the “scenario approach” to convex 
optimization using randomized methods [Calafiori, Campi 2006-2009] 



Case Study I: Combinatorial Search

P1 hides a treasure in one of M possible locations in the plane
P2 wants to find treasure in minimum time (chooses among M! possible paths)
Classical example of protecting high-value information

For
M = 10 possible treasure locations (M! = 3.6 million paths)
99% confidence (" = 0.01)
P1 and P2 considers all possible treasure locations (n2 = m1= 10)

P1 should sample

to determine optimal hiding location 

n1 ≥ n2m1

δ
= 10000 paths

However, a posteriori bounds can provide good
guarantees with much fewer samples

Case Study II: Dynamic Partial Inf. Game

Both players attempt to execute a mission, 
the one that completes it first wins
Mission:
• network with N mission-relevant computers 
• players takeover computers in turns
• mission requires n computers to jointly 

execute a program, but only a few subsets 
of n computers can succeed

Partial information:
• in “open” computers, both players can see if 

other took over
• in “closed” computers, a player cannot see 

if other already took over
think N=9, n=3, TTT 



Case Study II: Dynamic Partial Inf. Game

3) The game terminates when there are either three X’s
or three O’s in a row or column or diagonal. The game
ends in a draw if all the squares of the board are full
and neither player has won. Thus, the value of the
game is −1,+1, or 0 depending on whether P1 wins,
loses or the game ends in a draw respectively.
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4 7

8

Fig. 1. Tic-Tac-Toe with Partial Information.

We implemented Algorithm 1 with the following heuristic
Heur. Each player maintains an estimate of the state of
the board at each turn. At each turn, every player does the
following.
1) Check whether she can win the game. If so, play the
winning move.

2) Otherwise, check whether the opponent can win the
game in the next move. If so, block the opponent’s
move.

3) Otherwise, uniformly randomly select a square to play
into from the remaining ones.

4) At the end of a move, if a player believes that she
should have won the game, and yet the game has
not ended, then update the entry (change X to O or
vice versa) of the hidden square in the corresponding
row/column/diagonal in her estimate of the board.

Figure 2 summarizes the results of A-posteriori procedure
in Algorithm 3 applied to the above Tic-Tac-Toe game.
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Fig. 2. A-posteriori procedure applied to Tic-Tac-Toe with Partial Infor-
mation.
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(for either player)
First player has an advantage ($ 50%wins) 
Optimal strategy involves randomized 
choices
We have used SSP algorithm to construct 
players with 1% confidence

Mission:
• network with N mission-relevant computers 
• players take over computers in turns
• mission requires n computers to jointly 

execute a program, but only a few subsets 
of n computers can succeed

Partial information:
• in “open” computers, both players can see if 

other took over
• in “closed” computers, a player cannot see 

if other already took over

The Value of a Decision Aid System

X2

O
O

Q: What should O do?

X2

O

Stage 1: 1 X hidden Stage 2: 1 X hidden Stage 3: 2 Xs hidden



The Value of a Decision Aid System

X2

O
X2

O
O

Q: What should O do?

A: No point in top left,
X is there already.

Must play top middle

No longer possible to win,
draw is best bet.

X3O

In N = 9 
computer 

network it is 
not too bad 

to keep track 
of these, but 
it is much 
harder for 
large N.

If there was a top-left X
other player would not 
have hidden 2nd X

Stage 1: 1 X hidden Stage 2: 1 X hidden Stage 3: 2 Xs hidden

The Value of a Decision Aid System

X2

O
X2

O
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Q: What should O do?

A: No point in top left,
X is there already.

Must play top middle

No longer possible to win,
draw is best bet.

X3O

In N = 9 
computer 

network it is 
not too bad 

to keep track 
of these, but 
it is much 
harder for 
large N.

If there was a top-left X
other player would not 
have hidden 2nd X

Stage 1: 1 X hidden Stage 2: 1 X hidden Stage 3: 2 Xs hidden

Project goal
provide estimates of probability of mission success
help human operator sift through possible scenarios

but
no known solutions based on separation between estimation & control
! # must first find optimal players and then deduce optimal estimates



Conclusion

Cyber security as two-player large-scale matrix games

SSP randomized algorithm provides probabilistic security guarantees 

Game independent theoretical bounds
(in terms of relative computation of two players

Future work

Tools for machine-aided decision (estimates of state, future actions, graphical 
interfaces, etc.)

Mid-game players

Uncertainty in other player’s knowledge

Technical details on SSP at http://www.ece.ucsb.edu/~hespanha/published/#10GameTheory


